A Peptidoglycan Fragment Triggers β-lactam Resistance in Bacillus licheniformis
نویسندگان
چکیده
To resist to β-lactam antibiotics Eubacteria either constitutively synthesize a β-lactamase or a low affinity penicillin-binding protein target, or induce its synthesis in response to the presence of antibiotic outside the cell. In Bacillus licheniformis and Staphylococcus aureus, a membrane-bound penicillin receptor (BlaR/MecR) detects the presence of β-lactam and launches a cytoplasmic signal leading to the inactivation of BlaI/MecI repressor, and the synthesis of a β-lactamase or a low affinity target. We identified a dipeptide, resulting from the peptidoglycan turnover and present in bacterial cytoplasm, which is able to directly bind to the BlaI/MecI repressor and to destabilize the BlaI/MecI-DNA complex. We propose a general model, in which the acylation of BlaR/MecR receptor and the cellular stress induced by the antibiotic, are both necessary to generate a cell wall-derived coactivator responsible for the expression of an inducible β-lactam-resistance factor. The new model proposed confirms and emphasizes the role of peptidoglycan degradation fragments in bacterial cell regulation.
منابع مشابه
Chapter 17 THE INDUCTION OF β - LACTAMASES IN EUBACTERIA
The production of a β-lactamase can be induced by the presence of a β-lactam in the culture medium. Three distinct mechanisms have been discovered. In Bacillus licheniformis and Staphylococcus aureus, a penicillin receptor whose properties are similar to those of a PBP detects the presence of the antibiotic. In Citrobacter freundii, the damage caused by β-lactams to the peptidoglycan is detecte...
متن کاملDeletion of Lytic Transglycosylases Increases Beta-Lactam Resistance in Shewanella oneidensis
Production of chromosome-encoded β-lactamases confers resistance to β-lactams in many Gram-negative bacteria. Some inducible β-lactamases, especially the class C β-lactamase AmpC in Enterobacteriaceae, share a common regulatory mechanism, the ampR-ampC paradigm. Induction of ampC is intimately linked to peptidoglycan recycling, and the LysR-type transcriptional regulator AmpR plays a central ro...
متن کاملEnzyme activities and antibiotic susceptibility of colonial variants of Bacillus subtilis and Bacillus licheniformis.
A nonmucoid colonial variant of a mucoid Bacillus subtilis strain produced less amylase activity and a transparent colonial variant of a B. licheniformis strain produced less protease activity compared with their parents. Antibiotic susceptibility patterns of the colonial variants differed, and increased resistance to beta-lactam antibiotics was correlated with increased production of extracell...
متن کاملConformational and thermodynamic changes of the repressor/DNA operator complex upon monomerization shed new light on regulation mechanisms of bacterial resistance against β-lactam antibiotics
In absence of beta-lactam antibiotics, BlaI and MecI homodimeric repressors negatively control the expression of genes involved in beta-lactam resistance in Bacillus licheniformis and in Staphylococcus aureus. Subsequently to beta-lactam presence, BlaI/MecI is inactivated by a single-point proteolysis that separates its N-terminal DNA-binding domain to its C-terminal domain responsible for its ...
متن کاملDistinct roles of major peptidoglycan recycling enzymes in β-Lactamase production in Shewanella oneidensis.
β-Lactam antibiotics were the earliest discovered and are the most widely used group of antibiotics that work by inactivating penicillin-binding proteins to inhibit peptidoglycan biosynthesis. As one of the most efficient defense strategies, many bacteria produce β-lactam-degrading enzymes, β-lactamases, whose biochemical functions and regulation have been extensively studied. A signal transduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012